
USER GUIDE FOR GUERRIERI-IACOVIELLO
OCCBIN TOOLKIT

JANUARY 29, 2014

CITE AS: Guerrieri, Luca, and Matteo Iacoviello (2014) “Occbin: A Toolkit to Solve

Models with Occasionally Binding Constraints Easily”, working paper, Federal Reserve

Board

Overview

Modify and run the file setpathdynare4.m so as to point to the local Dynare installation

directory and to the directory containing the toolkit files.

We have used successfully Dynare versions 4.3.1 on Windows. We have also used Dynare

4.3.3 and 4.4.2 on Mac.

List of Example Files

The first three examples refer to the three models described in the paper.

1. runsim irrcap.m. An RBC model with a constraint on the level of investment. The

two relevant mod files are dynrbc.mod and dynrbcirr i.mod.

This examples shows how to declare the parameter values in an extermal file (named

paramfile irrcap.m, called from dynrbc steadystate.m).

If the example file runs correctly, it will generate a figure like the one in the file

figure example.pdf

2. runsim newkeynesian.m In this example, fv.mod is the model with the ZLB described

in the paper. Parameter values are declared in the file paramfile fv. These parameter

values can be overwrittem in the runsim newkeynesian file.

3. runsim borrcon.m In this example, borrcon.mod is a model with borrowing constraint

that binds occasionally. Parameter values are declared in the file paramfile borrcon.

These parameter values can be overwrittem in the runsim borrcon file.

Additional examples.

4. runsim irrcap twoconstraints.m. An RBC model with a constraint on the level

of investment and an asymmetric capital adjustment cost. This file shows how one

can use the codes to solve a model with two occasionally binding constraints using the

function solve two constraints

1



5. runsim irrcap twoconstraints computepolicy.m. For the same model as above,

but uses the code and the initcon option to show one can use the toolkit to derive the

model’s nonlinear policy functions.

6. runsim cgg.m. Solves a version of the Clarida-Gali-Gertler (“The Science of Monetary

Policy: A New Keynesian Perspective, JEL, 2009) model allowing for an inertial Taylor

rule subject the zero lower bound on nominal interest rates (see equation for rnot, the

notional interest rate).

7. runsim smetswouters.m. Solves the Smets-Wouters (AER, 2007) model allowing for

the zero lower bound on nominal interest rates (see equation for rnot, the notional

interest rate). The codes for the model were downloaded from the online Appendix on

the AEA webpage. We affected minimal changes to the code for compatibility with

Dynare 4. To avoid the estimation step, some parameter values were set at their initial

level prior to estimation.

8. runsim dnk.m. Solve a new-keynesian model with zero lower bound and government

spending. This folder shows how one can use the codes to declare the parameter values

only once in an outside file (named paramfile dnk.m). Shows how one can use separate

sets of functions to solve model disregarding nonlinearities, or to compute impulse

responses conditional on different baseline paths for the variables.

– dnk.mod contains a standard new-keynesian model specified away from the zlb con-

straint.

– dnk zlb.mod is an exact replica of dnk.mod file with the model specified at the

constraint.

Except for the interest rate equation, the models in the two .mod files are identical.

Description of Key Functions Used

1. The function that solves the model is:

solve one constraint

[zdatalinear zdatapiecewise zdatass oo base M base] =

solve one constraint(modnam, modnamstar,

constraint, constraint relax,

shockssequence, irfshock, nperiods, maxiter, init);

Inputs:

modnam: name of .mod file for the reference regime (excludes the .mod extension).

modnamstar: name of .mod file for the alternative regime (excludes the .mod exten-

sion).

2



constraint: the constraint (see notes 1 and 2 below). When the condition in constraint

evaluates to true, the solution switches from the reference to the alternative regime.

constraint relax: when the condition in constraint relax evaluates to true, the

solution returns to the reference regime.

shockssequence: a sequence of unforeseen shocks under which one wants to solve the

model (size T×nshocks).

irfshock: label for innovation for IRFs, from Dynare .mod file (one or more of the

‘varexo’).

nperiods: simulation horizon (can be longer than the sequence of shocks defined in

shockssequence; must be long enough to ensure convergence back to the reference

model at the end of the simulation horizon and may need to be varied depending on

the sequence of shocks).

maxiter: maximum number of iterations allowed for the solution algorithm (20 if not

specified).

init: the initial position for the vector of state variables, in deviation from steady

state (if not specified, the default is steady state). The ordering follows the definition

order in the .mod files.

Outputs:

zdatalinear: an array containing paths for all endogenous variables ignoring the

occasionally binding constraint (the linear solution), in deviation from steady state.

Each column is a variable, the order is the definition order in the .mod files.

zdatapiecewise: an array containing paths for all endogenous variables satisfying

the occasionally binding constraint (the occbin/piecewise solution), in deviation from

steady state. Each column is a variable, the order is the definition order in the .mod

files.

zdatass: the steady state values of the variables. The ordering follows the definition

order in the .mod files.

oobase , Mbase : structures produced by Dynare for the reference model – see

Dynare User Guide.

2. The function that solves the model with two constraints is

[zdatalinear zdatapiecewise zdatass oo 00 M 00] =

solve two constraints(modnam 00,modnam 10,modnam 01,modnam 11,...

constraint1, constraint2,...

constraint relax1, constraint relax2,...

shockssequence,irfshock,nperiods,curb retrench,maxiter,init);

3



Inputs:

modnam 00: name of the .mod file for reference regime (excludes the .mod extension).

modnam 10: name of the .mod file for the alternative regime governed by the first

constraint.

modnam 01: name of the .mod file for the alternative regime governed by the second

constraint.

modnam 11: name of the .mod file for the case in which both constraints force a switch

to their alternative regimes.

constraint1: the first constraint (see notes 1 and 2 below). If constraint1 evaluates

to true, then the solution switches to the alternative regime for condition 1. In that

case, if constraint2 (described below) evaluates to false, then the model solution

switches to enforcing the conditions for an equilibrium in modnam 10. Otherwise, if

constraint2 also evaluates to true, then the model solution switches to enforcing the

conditions for an equilibrium in modnam 11.

constraint relax1: when the condition in constraint relax1 evaluates to true, the

solution returns to the reference regime for constraint1.

constraint2: the second constraint (see notes 1 and 2 below).

constraint relax2: when the condition in constraint relax2 evaluates to true, the

solution returns to the reference regime for constraint2.

shockssequence: a sequence of unforeseen shocks under which one wants to solve the

model

irfshock: label for innovation for IRFs, from Dynare .mod file (one or more of the

‘varexo’)

nperiods: simulation horizon (can be longer than the sequence of shocks defined in

shockssequence; must be long enough to ensure convergence back to the reference

model at the end of the simulation horizon and may need to be varied depending on

the sequence of shocks).

curb retrench: a scalar equal to 0 or 1. Default is 0. When set to 0, it updates the

guess based of regimes based on the previous iteration. When set to 1, it updates in

a manner similar to a Gauss-Jacobi scheme, slowing the iterations down by updating

the guess of regimes only one period at a time.

maxiter: maximum number of iterations allowed for the solution algorithm (20 if not

specified).

init: the initial position for the vector of state variables, in deviation from steady

state (if not specified, the default is a vector of zero implying that the initial conditions

coincide with the steady state). The ordering follows the definition order in the .mod

files.

4



Outputs:

zdatalinear: an array containing paths for all endogenous variables ignoring the

occasionally binding constraint (the linear solution), in deviation from steady state.

Each column is a variable, the order is the definition order in the .mod files.

zdatapiecewise: an array containing paths for all endogenous variables satisfying

the occasionally binding constraint (the occbin/piecewise solution), in deviation from

steady state. Each column is a variable, the order is the definition order in the .mod

files.

zdatass: a vector that holds the steady state values of the endogenous variables (

following the definition order in the .mod file).

oo00 , M00 : structures produced by Dynare for the reference model – see Dynare

User Guide.

3. The functions solve one constraint and solve two constraints assume that the

endogenous, exogenous variables and the model parameters are declared in exactly the

same order in all .mod files.

In general, to create the additional files, it pays to simply make a replica of the reference

.mod file and amend the relevant equations.

4. The only restrictions for the .mod files is that they may accommodate at

most one lag and one lead of the endogenous variables. The conditions that govern

the switching across the reference and alternative(s) model(s) may only involve con-

temporaneous variables. With appropriate redefinitions, these restrictions come at no

loss of generality.

Additional Notes

1. Writing the constraint

Model with irreversible capital. The original occasionally binding constraint in

the model is

it ≥ log (φ · Iss)

where it is natural logarithm of investment (see mod file), Iss is steady state investment

in levels, and φ is a parameter.

For the constraint to be violated, in the candidate solution calculated under the as-

sumption that the constraint does not bind the following must be true

it < log (φ · Iss)

Rewrite each variable as

xt ≡ x̃t + xss

5



In the runsim irrcap.m code, the constraint will have to be expressed in linearized form

as

ĩt + iss < log (φ · Iss)⇐⇒ ĩt < log (φ)

and the string constraint will be

i < log(PHII)

Therefore note that in the mod file, i will denote the variable, whereas in the constraint

the same i will denote the variable minus its steady state level.

Model with borrowing constraint. The occasionally binding constraint specifies

that Bt = mYt, which implies that λt > 0. This constraint is violated if in the candidate

solution the following is true

λt < 0

Rewrite λt as

λt ≡ λ̃t + λss

In the runsim borrcon.m file, the constraint will be expressed in linearized form as

λ̃t + λss < 0⇐⇒ λ̃t < −λss.

and the string constraint will be

lambda < −lambda ss

To write constraint relax, note that the constraint will then bind again if at any

point borrowing exceeds its upper bound. That is

B̃t +Bss > m
(
Ỹt + Yss

)
⇐⇒ B̃t > mỸt,

and the string constraint relax will be

B > mY

2. In the toolbox, constraint and constraint relax only admit contemporane-

ous endogenous variables. Note that there is no loss of generality since appropriate

redefinitions can accommodate a general lead and lag structure.

3. In all runsim *.m files, we declare M and oo to be global variables (for use by Dynare)

4. One does not need to specify the steady state of any alternative model. All models are

approximated around the steady state of the reference model (which needs to satisfy

the Blanchard-Kahn conditions). Since local and global stability need not coincide,

the conditions for an equilibrium in the alternative regime(s) need not satisfy the BK

conditions.

6



5. Values for the parameters (whether in the .mod or in external files) are specified only

for the reference model. Parameter values specified for the alternative model(s) are

ignored by the code (but not the list of parameters, which is used for an error check).

If a parameter only enters the alternative model, it needs to be declared as parameter

and assigned a value in the reference model.

6. We have strived to minimize possible conflicts between local variables used in coding the

solution algorithm and parameter names declared in the .mod files. We have reserved

variable names with a trailing underscore – i.e., names such as “myfavoritevariablename ”

– for the solution routines. Variable names with trailing underscores should be avoided

in the .mod files.

7


