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What We Do

• Inequality constraints that bind occasionally arise in a wide array
of economic applications.

• We describe how to adapt a first-order perturbation approach and
apply it in a piecewise fashion to handle occasionally binding
constraints.

• We solve three examples of dynamic stochastic models with this
approach:

1. A real business cycle model with a constraint on investment;
2. A new Keynesian model subject to the zero lower bound on the

policy interest rate;
3. A textbook example of optimal consumption choice in the presence

of liquidity constraints.

• In each case, we compare the piecewise linear perturbation
solution with a high-quality numerical solution that can be taken
to be virtually exact.
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Contributions

1. We outline an algorithm to obtain a piecewise linear solution.

• While the individual elements of the algorithm are not original, our
recombination simplifies the application of this type of solution to a
general class of models.

• We have developed a MATLAB toolbox that extends Dynare.

2. We present a systematic assessment of the quality of the piecewise
linear perturbation method relative to a virtually exact solution.

• Where applicable, the virtually exact solution is obtained by
dynamic programming on a very fine lattice for the state variables
of the model.

• In addition, following Christiano and Fisher (2000), we use spectral
methods, which have been found to be highly accurate; for instance
see Aruoba et al. (2006).
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The Solution Approach

• Because standard perturbation methods only provide a local
approximation, they cannot capture occasionally binding
constraints without adaptation.

• Our analysis builds on an insight that has been used extensively in
the literature on the effects of attaining the zero-lower bound on
nominal interest rates.

• Occasionally binding constraints can be handled as different
regimes of the same model.

• Under one regime, the occasionally binding constraint is slack.
• Under the other regime, the same constraint is binding.

• The piecewise linear solution method involves linking the
first-order approximation of the model around the same point
under each regime.
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The Two Regimes

• Reference regime M1 (occasionally binding constraint is slack)
Linearized system can be expressed as:

AEtXt+1 + BXt + CXt−1 + Eεt = 0, (M1)

• Alternative regime M2 (occasionally binding constraint binds)
Linearized system (around same non-stochastic steady state) can
be expressed as:

A∗EtXt+1 + B∗Xt + C∗Xt−1 +D∗ + E∗εt = 0. (M2)

• Assume BK conditions hold in M1, and that absent shocks system
is expected to return to M1 in finite time

• We are now in a position to define a solution for our model.
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Definition

Definition
A solution for a model with an occasionally binding constraint is a
function f : Xt−1 × εt → Xt such that the conditions under system
(M1) or the system (M2) hold, depending on the evaluation of the
occasionally binding constraint.

• Alternatively, given initial conditions X0 and the realization of a
shock ε1, the function f can be expressed as a set of matrices Pt,
a set of matrices Rt, and a matrix Q1, such that:

X1 = P1X0 +R1 +Q1ε1, (1)

Xt = PtXt−1 +Rt ∀t ∈ {2, ∞}. (2)

• At each point in time the matrices Pt, Qt, Rt are time varying,
even if they are functions of Xt−1 and ε1 only.
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The algorithm

The algorithm employs a guess-and-verify approach.

1. We guess the periods in which each regime applies.

2. Second, we proceed to verify and, if necessary, update the initial
guess.

Here are the details:
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The Algorithm (continued)

1. Assume that from period T onwards (M1) applies in perpetuity.
Then for any t ≥ T, using standard perturbation methods, one can
characterize the linear approximation to the decision rule for Xt, given
Xt−1, as:

Xt = PXt−1 +Qεt, (M1DR)

Then for any t ≥ T, Pt = P , Rt = 0.
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The Algorithm (continued)

2. Using XT = PXT−1 and Equation (M2), the solution in period T-1
will satisfy the following matrix equation:

A∗PXT−1 + B∗XT−1 + C∗XT−2 +D∗ = 0. (3)

Solve the equation above for XT−1 to obtain the decision rule for
XT−1, given XT−2:

XT−1 = − (A∗P + B∗)−1 (C∗XT−2 +D∗) . (4)

Accordingly, PT−1 = − (A∗P + B∗)−1 C∗ and

RT−1 = − (A∗P + B∗)−1D∗
Notice that the solution in T-1 combines elements from the reference
and alternative regimes.
Continuing to substitute in this fashion, one can see that the “weights”
depend on the duration of the regimes.
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The Algorithm (continued)

3. Using XT−1 = PT−1XT−2 +RT−1 and either (M1) or (M2), as
implied by the current guess of regimes, solve for XT−2 given XT−3.

4. Iterate back in this fashion until X0 is reached, applying either (M1)
or (M2) at each iteration, as implied by the current guess of regimes.

5. Depending on whether regime (M1) or (M2) is guessed to apply in

period 1, Q1 = − (AP2 + B)−1 E , or Q1 = − (A∗P2 + B∗)−1 E∗.

6. Using the guess for the solution obtained in steps 1. to 5., compute
paths for X to verify the current guess of regimes. If the guess is
verified, stop. Otherwise, update the guess for when regimes (M1) and
(M2) apply and return to step 1.
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Features of the Solution

• Importantly, the solution that the algorithm produces is not just
linear.

• The solution is highly nonlinear

• The dynamics in one of the two regimes may crucially depend on
how long one expects to be in that regime.

• In turn, how long one expects to be in that regime depends on the
state vector.

• This interaction produces the high nonlinearity.
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Advantages and Disadvantages

The piecewise linear solution inherits some disadvantages of a linear
perturbation method:

• Just like any linear solution, it discards all information relative to
the possibility of unforeseen future shocks;

• It does not capture precautionary behavior linked to the possibility
that a constraint may become binding in the future, as a result of
shocks yet unrealized.

But it also inherits some great advantages:

• It is computationally fast.

• It is applicable to models with a large number of state variables
even when the curse of dimensionality renders other higher-quality
methods inapplicable.

• It is general and application of our algorithm to different models
requires only minimal programming.
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Application 1: A Simple Asset Pricing Model

Consider the following asset pricing model

qt = β(1− ρ)Etqt+1 + ρqt−1 − σrt + ut

rt = max(r, φqt)

β=0.99, ρ=0.5, φ=0.5, r=-0.01 σ=5
ut AR(1) process with ρu=0.5 and σu=0.05

For realizations of ut above a threshold, higher values of ut lead to
higher asset prices and, through the feedback rule, higher interest rates
(and there is no difference with linearized solution).

For realizations of ut below threshold, lower values of ut lead to much
lower asset prices, since interest rates are bounded below and cannot
offset the decline in qt.
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Policy Functions for Simple Asset Pricing Model
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Policy Functions for Simple Asset Pricing Model
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Policy Functions for Simple Asset Pricing Model
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Policy Functions for Simple Asset Pricing Model
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Policy Functions for Simple Asset Pricing Model
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Application 2 – RBC with constraint on investment

The planner maximizes households’ utility

max E0

∞

∑
t=0

βt C1−γ
t − 1
1− γ

,

subject to the constraints:

Ct + It = AtKα
t−1,

Kt = (1− δ)Kt−1 + It,
It ≥ φISS.

The stochastic process for the technology At is given by

ln At = ρ ln At−1 + σεt.

Set γ=2. Set φ = 0.975, implying that constraint binds about 40% of
the time
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The response of shocks to technologyFigure 2: RBC Model with Constraint on Investment: An Unexpected Decrease in Productivity,
Followed by an Unexpected Increase in Productivity
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Euler Equation Errors

See the paper for comparisons of distributions, particular moments,
and welfare cost of adopting a piecewise linear solution relative to a
nonlinear, virtually exact solution.
Focus here on Euler errors:

C−γ
t − λt = βEt

(
C−γ

t+1

(
1− δ + αAt+1Kα−1

t

)
− (1− δ) λt

)
.

We define the Euler equation error as:

errt =
−Ct +

{
λt + Etβ

[
C−γ

t+1

(
(1− δ) + αAt+1Kα−1

t

)
− (1− δ) λt+1

]}− 1
γ

Ct
.
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Euler Errors for Our Solution Algorithm

Figure 4: RBC Model with and without Constraint on Investment: Euler Equations Residuals
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Euler Errors: Model with vs Model w/o ConstraintFigure 3: RBC Model with Constraint on Investment: Comparison of Euler Equation Residuals Across
Solution Methods (residuals expressed as a percent of consumption)
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Euler Errors: Comparison with Full Nonlinear

Figure 5: RBC Model with Constraint on Investment: Comparison of Euler Equation Residuals
Across Models and Solution Methods
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Other Checks and Assessment

For each of the models considered, in the paper we also present:

• Comparisons of the distributions of individual endogenous
variables;

• Comparisons of first and second moments;

• Frequency and duration of regime switching;

• A second measure of bounded rationality – a compensating
subsidy for switching from the use of nonlinear decision rules to
piecewise linear rules.

• In most cases, we are pleased with the performance of our
algorithm.
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Impulse Responses: Calvo Model with ZLB
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Impulse Responses: Model with Borrowing Limit
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Estimation: Forming a Likelihood Function

• Can we use this solution technique when we are interested in
estimating a model with occasionally binding constraints?

• Rewrite the solution to make explicit the relationship between
reduced-form parameters and shocks:

Xt = P(Xt−1, εt)Xt−1 + D(Xt−1, εt) + Q(Xt−1, εt)εt

• This representation of the solution makes clear the basic
endogeneity issue to be resolved to form a likelihood function.

• The standard Kalman filter allows for exogenous, but not
endogenous variation in the reduced form coefficients.

• Viable options are simulation based filters, such as the Unscented
Kalman filter or the Particle filter.

• Alternatively, consider an approach to forming the likelihood
function that relies on a change in variables.
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Estimation: Forming a Likelihood Function

• The solution of the model takes the form:

Xt = P(Xt−1, εt)Xt−1 + D(Xt−1, εt) + Q(Xt−1, εt)εt

• ... and in terms of observables Yt , through the observation
equation Yt = HXt, we have:

Yt = HP(Xt−1, εt)Xt−1 + HD(Xt−1, εt) + HQ(Xt−1, εt)εt

One can initialize X0, and can recursively solve for εt, given Xt−1
and the current realization of Yt .
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Estimation: Forming a Likelihood Function

• The standard change in variables argument requires forming the
Jacobian of the inverse transformation.

• This Jacobian is notoriously costly to construct for numerical
solutions.

• The local linearity implied by the piece-wise linear perturbation
approach implies that this Jacobian is a byproduct of the solution.

• Given that εt is NID(0, Σ), applying the change in variables
argument implies that the log likelihood for Y can be written as:

log L = −T
2

log(det(Σ))− 1
2

T

∑
t

ε̂′tΣ
−1ε̂t −

T

∑
t

log(|det(HQt)|)

• Given parameters, solving, filtering and evaluating L takes seconds
with serial processing in Matlab.
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Estimation Example

• Can the estimation approach suggested in the previous slide work
in practice?

• In a related paper, we show that the answer is yes.

• We estimate a variant of the Smets-Wouters model extended to
include a housing sector following Iacoviello (2005).

• We estimate the model subject to an occasionally binding
constraint on housing wealth and subject to the zero lower bound
on interest rates.

• The estimated model is described in “Collateral Constraints and
Macroeconomic Asymmetries,” available on Matteo’s research
page.
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Conclusions

• The piecewise perturbation approach retains key properties of the
standard linear perturbation approach while extending the range of
models that can be solved.

• The quality of the solution is comparable to that of the linear
perturbation method for models that exclude occasionally binding
constraints.

• The key advantages the piece-wise perturbation approach are:
• It can be deployed with minimal adaptation;
• It is applicable to models with a large number of state variables;
• It is computationally fast.

• Our codes are available on Matteo’s research page. Try them out.
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